
16.2) Line Integrals

Say we have a curve C of finite length in either the x,y plane or x,y, z space. We will focus
on the former situation, for the sake of simplicity, but the concepts we are about to develop
can be applied to the latter as well.

The curve C could be a line segment. (We consider a line to be a special case of a
curve–i.e., it is a straight curve.)

Suppose C has been parameterized with the parametric equations x  xt, y  yt, where
t  a,b. We typically think of t as representing time. This parameterization dictates a
positive direction on the curve, which is the direction one moves along the curve as t
increases. The curve is thus referred to as an oriented curve. In contrast, a curve without
a parameterization is a non-oriented curve.

Let Pa denote the point xa,ya, and let Pb denote the point xb,yb. We refer to the
former as the curve’s initial point and to the latter as the curve’s final point.

C is said to be a closed curve if Pa  Pb.

For example, in the x,y plane, the unit circle centered at the origin is x2  y2  1. Expressed
in this form, it is a non-oriented curve. It may be parameterized as x  cos t, y  sin t, with
t  0,2, in which case it is an oriented curve, with its positive direction being
counter-clockwise. It is also a closed curve, with P0  P2  1,0. On the other hand, if
the circle is parameterized as x  sin t, y  cos t, then its orientation is clockwise, and
P0  P2  0,1.

C is said to be a simple curve if it never crosses itself between t  a and t  b. In other
words, if t1 and t2 are two distinct values in the open interval a,b, then
xt1,yt1  xt2,yt2.

When we stipulate that a curve is simple, this implies that the curve is traversed exactly
once when t varies from a to b. In other words, we rule out a situation such as
parameterizing the unit circle as x  cos t, y  sin t, with t  0,4, since here the circle
would be traversed twice. However, if we stipulate t  0,2, then we have a simple,
closed curve.

For any oriented simple, closed curve in the x,y plane:
 Its orientation can be classified as either clockwise or counter-clockwise.
 The curve determines a well-defined region of the x,y plane known as its interior,

and the curve is the boundary of this region. (Its interior is always on your left when
you traverse the curve counter-clockwise, and is always on your right when you
traverse the curve clockwise.)
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This is generally not the case for a simple, closed curve in x,y, z space. Furthermore, both
in the x,y plane and in x,y, z space, it is generally not the case for a curve that is not closed
or not simple.

Here is an intriguing example of a two-dimensional curve that is closed but not simple: The
curve consisting of the line segment from 1,0 to 1,1, followed by the line segment from
1,1 to 0,1, followed by the line segment from 0,1 to 0,2, followed by the line
segment from 0,2 to 1,2, followed by the line segment from 1,2 to 1,2,
followed by the line segment from 1,2 to 2,2, followed by the line segment from 2,2 to
2,2, followed by the line segment from 2,2 to 1,2, followed by the line segment
from 1,2 to 1,0, followed by the line segment from 1,0 to 1,0. This curve cannot
be classified as clockwise or counter-clockwise, and its interior cannot be coherently
defined.

If a curve is simple but not closed, its orientation can be specified by indicating which
endpoint is the initial point and which endpoint is the final point.

If we picture a particle moving along the curve from its initial point to its final point, in
accordance with the curve’s parametric equations, then the particle has position vector
rt   xt,yt , velocity vector vt   xt,yt , speed vt  xt2  yt2 , unit
tangent vector Tt  1

vt
vt  xt2  yt21/2  xt,yt , acceleration vector

at   xt,yt , and arclength st  
a

t

vu du.

By the Fundamental Theorem of Calculus (Part One), st  vt.

C is said to be a smooth curve if it has no kinks (or cusps). This occurs provided vt is
never zero.

We shall deal with curves that are both simple and smooth. They may or may not be
closed.

In Leibnitz notation, xt  dx
dt

, yt  dy
dt

, and st  ds
dt

. It follows that dx  xt dt,
dy  yt dt, and ds  st dt. Writing vt in place of st, we have ds  vt dt.

Let fx,y be a real-valued function whose domain includes the curve C. For this function
and this curve, we can define three different definite integrals. They are called line
integrals, but it would be more accurate to call them curve integrals, because we are
integrating the function f over the curve C. Furthermore, these integrals are classified as
scalar line integrals because the function f is real-valued. (In a little while, we will also
study vector field line integrals.)
 

C
fx,y dx is called the line integral with respect to x.

 
C
fx,y dy is called the line integral with respect to y.

 
C
fx,y ds is called the line integral with respect to s (i.e., with respect to arc length).
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Each integral is evaluated by expressing its integrand in terms of the parameter t.

 
C
fx,y dx  

a

b

fxt,yt xt dt

 
C
fx,y dy  

a

b

fxt,yt yt dt

 
C
fx,y ds  

a

b

fxt,yt vt dt  
a

b

fxt,yt xt2  yt2 dt

For the sake of brevity, we may write ft in place of fxt,yt. Thus, we have:

 
C
fx,y dx  

a

b

ft xt dt

 
C
fx,y dy  

a

b

ft yt dt

 
C
fx,y ds  

a

b

ft vt dt  
a

b

ft xt2  yt2 dt

Of these three scalar line integrals, the third is the one that has the most straightforward
application...

Preliminary Discussion:

In basic geometry, a “cylinder” is understood to be a circular cylinder with finite height,
capped off by a circular top and a circular bottom. The cylinder has a lateral face that may
be referred to as a tube. If the cylinder has radius r and height h, then the area of the tube
is 2rh. To justify this formula, imagine slitting the tube vertically and then rolling it out flat,
in which case it becomes a rectangle. The width of the rectangle is the height h. The
length of the rectangle is the circumference of the cylinder’s circular top and bottom, which
is 2r. Hence, the rectangle’s area is the product of its length and its width, giving us 2rh.

In calculus, a circular cylinder is the orthogonal projection of a circle into the third
dimension, and it has infinite extension. Consider the circle x2  y2  9 in the x,y plane,
centered at the origin and having radius 3. Its orthogonal projection is the cylinder
x2  y2  9 in x,y, z space, which is parallel to the z axis. It extends infinitely far in the
direction of both the positive z axis and the negative z axis. However, the section of the
cylinder between the horizontal planes z  0 and z  5 is of finite extension; its height is 5.
Using our basic geometry formula, the area of this section is 235  30.

Now suppose we change the upper boundary from the horizontal plane z  5 to the oblique
plane x  z  10. This plane is the orthogonal projection, parallel to the y axis, of the line
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z  x  10 in the x, z plane. We now have a section of our circular cylinder with a flat
bottom edge and an irregular top edge (in other words, the bottom edge has a fixed height
of 0, but the top edge has a variable height).

If we roll the section out flat, as we did before, we no longer have a rectangle. We have a
two-dimensional shape with one horizontal straight edge, two vertical straight edges, and
one curving edge. How do we find the area of this shape? Well, isn’t that exactly why God
created the definite integral?

Actually, we can find the area without rolling the section out flat. This is why God created
the scalar line integral with respect to arc length!

The curve C is the circle x2  y2  9 in the x,y plane. It may be parameterized as x  3cos t,
y  3sin t, where t  0,2. Here we have fx,y  x  10  3cos t  10  ft. So the

area is 
C
x  10ds  

0

2

3cos t  10 vt dt. Since xt  3sin t and yt  3cos t,

vt  9sin2t  9cos2t  3, so we get

3 
0

2

3cos t  10dt  33sin t  10t0
2  320  60.

We can also have scalar line integrals in three dimensions. For these, we may write ft in
place of fxt,yt, zt.

 
C
fx,y, z dx  

a

b

fxt,yt, zt xt dt  
a

b

ft xt dt

 
C
fx,y, z dy  

a

b

fxt,yt, zt yt dt  
a

b

ft yt dt

 
C
fx,y, z dz  

a

b

fxt,yt, zt zt dt  
a

b

ft zt dt

 
C
fx,y, z ds  

a

b

fxt,yt, zt vt dt  
a

b

fxt,yt, zt xt2  yt2  zt2 dt 


a

b

ft vt dt  
a

b

ft xt2  yt2  zt2 dt

Vector Field Line Integrals in Two Dimensions:

Let Fx,y   px,y, qx,y  be a two-dimensional vector field, which we shall interpret as
a force field. Assume the component functions p and q are continuous.
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Let C be a curve in the x,y plane as outlined in the preceding section, with parametric
equations x  xt, y  yt, where t  a,b.

We now address the following physics issue: What is is the work done in moving a particle
through the force field along the curve C from the point Pa to the point Pb (in other words,
what is the work done during the time interval from t  a to t  b?

At any instant of time, the particle is located at the point xt,yt, and the force acting on
the particle at this instant is Fxt,yt   pxt,yt, qxt,yt . We may denote
this more compactly by writing Ft   pt,qt .

For brevity, may write r, v, and T in place of rt, vt, and Tt, and we may write v and s in
place of vt and st. We may write F in place of either Fx,y or Ft, we may write p in
place of either px,y or pt, and we may write q in place of either qx,y or qt. So
F   p,q .

It’s possible that the force F might be acting in the same direction as T, but typically it will
not be–it will be acting in some other direction. In this case, the work done will depend on
the component of force acting in the direction of T, i.e., on the component of F along T,
compTF.

Here is a quick refresher on the subject...

Given two nonzero vectors u and w, the vector projection of w onto u is denoted projuw.
The component of w along u, also known as the scalar projection of w onto u, is
denoted compuw.

compuw is the signed magnitude of projuw. If the angle between u and w is less than or
equal to 

2 , then compuw  |projuw |, but if the angle is greater than 
2 , then

compuw  |projuw |.

compuw  uw
u , where u is the magnitude of u.

projuw  compuw u
u  uw

u
u
u  uw

u2 u

If u is a unit vector, then u  1, and our formulas simplify as follows:

compuw  u  w

projuw  compuwu  u  wu

Now let’s get back to Chapter 16.
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Since T is a unit vector, compTF  T  F.

We normally write F  T in place of T  F. (We can do so because the dot product is
commutative.)

To find the work done by the force field, we integrate F  T over the curve C from the point
Pa to the point Pb. To be more specific, we integrate with respect to arc length. Thus, we

calculate the work done by evaluating the line integral 
C

F  T ds. We may call this the work

integral. It is an example of a vector field line integral.

Substituting 1
v v in place of T and v dt in place of ds, F  T ds  F   1

v v v dt 
1
v F  v v dt  F  v dt. Thus, we may write our work integral as 

C

F  v dt.

Since dt is a scalar, we may write F  v dt as F  v dt. (If we were going to be really picky,
we should write v dt as dt v, since when we have a scalar multiple of a vector, we are
supposed to write the scalar to the left of the vector, but let’s not worry about this.)

Since v  dr
dt

, we have dr  v dt. So we may write F  v dt as F  dr. Thus, we may write

our work integral as 
C

F  dr.

Since v   dx
dt

, dy
dt

, F  v   p,q    dx
dt

, dy
dt

  p dx
dt

 q dy
dt

. Consequently,

F  v dt  p dx
dt

 q dy
dt

dt  p dx  q dy. We may therefore write our work integral as


C

p dx  q dy. This may also be written as 
C

p dx  
C

q dy.

Notice that 
C

p dx and 
C

q dy are scalar line integrals with respect to x and y, respectively (as

defined earlier).

In summary, our work integral can be expressed in any of the following ways (i.e., the
following expressions are equivalent):

1. 
C

F  T ds

2. 
C

F  v dt

3. 
C

F  dr

4. 
C

p dx  q dy  
C

p dx  
C

q dy
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As already discussed, we evaluate a line integral by rewriting it in terms of t. In version #2,
we simply change the boundaries of integration to a and b. In version #4, we must also
replace dx with xt dt, and replace dy with yt dt. Thus we get:

 
a

b

Ft  vt dt

 
a

b

pt xt dt  qt yt dt  
a

b

pt xt  qt yt dt, or


a

b

pt xt dt  
a

b

qt yt dt

Example 1:

Let Fx,y   y  x, x , and let C be the quarter of the unit circle from the point 0,1 to the
point 1,0, parameterized as x  sin t, y  cos t, where t  0, 

2 . (Note that the positive
direction of the curve is clockwise.) Find the work done in moving a particle through the
force field along curve C from 0,1 to 1,0.

Here, px,y  y  x and qx,y  x, so pt  cos t  sin t and qt  sin t.

xt  cos t and yt   sin t.

pt xt  cos t  sin tcos t  cos2t  cos t sin t.

qt yt  sin t sin t   sin2t.

The work is thus 
0

/2

cos2t  cos t sin t  sin2t dt.

We may employ the trig identities cos2t  sin2t  cos2t, and cos t sin t  1
2 sin2t.


0

/2

cos2t  sin2t  cos t sin t dt  
0

/2

cos2t  1
2 sin2t dt 

1
2 sin2t  1

4 cos2t
0

/2
  1

2 .

Notice that work can be negative as well as positive (or, indeed, zero). The sign of the work
depends on the orientation of the curve. Reversing the orientation of the curve reverses the
sign of the work.
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If C denotes an oriented curve, then the curve consisting of the same points but with the

reverse orientation may be denoted C. So 
C

F  T ds  
C

F  T ds

In the above example, C would be the quarter of the unit circle starting at 1,0 and ending
at 0,1, with a counter-clockwise orientation, parameterized as x  cos t, y  sin t, where
t  0, 

2 . The work done in moving a particle through F along this curve would be 1
2 .

A given curve can have many different parameterizations all with the same orientation. The
work done in moving a particle along the curve is the same regardless of which of these
parameterizations is used. In other words, the work integral is independent of
parameterization, so long as orientation is preserved.

So far, we have been dealing with curves that are simple and smooth. However, we can
also deal with line integrals over curves that are simple and piecewise smooth. Say we
have a simple, smooth curve C1 with initial point P1 and final point Q1, and another simple,
smooth curve C2 with initial point P2 and final point Q2. Suppose P2  Q1, i.e., the second
curve starts where the first curve ends. Suppose the curves are otherwise disjoint, with the
possible exception that Q2 might equal P1. The curve C  C1  C2 is considered to be
simple. It may or may not be smooth, depending on whether it has a kink at Q1, but in
either case it is considered to be piecewise smooth (because it is the union of two smooth
“pieces” or subcurves).

A simple, piecewise smooth curve is also known as a path.

Given the piecewise smooth curve C  C1  C2, 
C

 
C1

 
C2

(this applies to all of the different

types of line integral discussed so far).

The curve C  C1  C2, as outlined above, has initial point P1 and final point Q2. We could
think of a particle moving along the curve from P1 to Q2, passing through the point Q1 along
the way. Suppose it takes 3 seconds for it to journey from P1 to Q1, and another 3 seconds
for it to journey from Q1 to Q2 (so the entire journey takes 6 seconds). We could
parameterize C so the journey from P1 to Q2 occurs when t varies over the time interval
0,6. However, the work done by the force field F in this case would be equal to the work
done if we had two particles, one moving from P1 to Q1 and the other simultaneously
moving from Q1 to Q2. We can parameterize C1 and C2 so that both journeys occur over
the time interval 0,3. This is generally the model we will adopt.

Before we consider an example, here is a reminder of an important principle from Module
One: Say we want to parameterize a line segment with endpoints A and B, so that A is the
initial point and B is the final point, with t  0,1.
 If the line segment is two-dimensional, let A  a1,a2 and B  b1,b2. Then we

may use parametric equations x  1  ta1  tb1, y  1  ta2  tb2.
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 If the line segment is three-dimensional, let A  a1,a2,a3 and B  b1,b2,b3. Then
we may use parametric equations x  1  ta1  tb1, y  1  ta2  tb2,
z  1  ta3  tb3.

Example 2:

In the x,y plane, let C  C1  C2, where C1 is the line segment with endpoints 1,0 and
0,1, while C2 is the line segment with endpoints 0,1 and 1,0. We shall set up
parameterizations so that C1 has initial point 1,0 and final point 0,1, and C2 has initial
point 0,1 and final point 1,0. We can think of C itself as having initial point 1,0 and
final point 1,0.

We parameterize C1 by the parametric equations x1t  1  t, y1t  t, with t  0,1. Note
that x1t  1 and y1t  1.

We parameterize C2 by the parametric equations x2t  t, y2t  1  t, with t  0,1.
Note that x2t  1 and y2t  1.

Let Fx,y   x  y,x  y . Here we have px,y  x  y and qx,y  x  y.

On C1, Fx1t,y1t   x1t  y1t,x1t  y1t    1,1  2t . Here we have p1t  1
and q1t  1  2t.

On C2, Fx2t,y2t   x2t  y2t,x2t  y2t    1  2t,1 . Here we have
p2t  1  2t and q2t  1.


C

F  T ds  
C1

F  T ds  
C2

F  T ds 


0

1

p1t x1t  q1t y1t dt  
0

1

p2t x2t  q2t y2t dt 


0

1

11  1  2t1 dt  
0

1

1  2t1  11 dt 


0

1

2t dt  
0

1

2t dt  t2 0
1  t2 0

1  1  1  0.

Example 3:

In the x,y plane, let C be the semicircle x2  y2  1 with y  0, having endpoints 1,0 and
1,0, parameterized as x  cos t, y  sin t, where t  0,. xt   sin t and yt  cos t.
Thus, 1,0 is the initial point and 1,0 is the final point.

As in Example 2, let Fx,y   x  y,x  y . Here, px,y  x  y and qx,y  x  y, so
pt  cos t  sin t and qt  cos t  sin t.
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
C

F  T ds  
0



cos t  sin t sin t  cos t  sin tcos t dt 


0



cos2t  sin2t  2cos t sin t dt  
0



cos2t  sin2t dt 

1
2 sin2t  1

2 cos2t
0


 1

2 sin2t  cos2t0
  1

2 0  0  1  1  0.

Notice that Examples 2 and 3 involve the same vector field F, but two different curves C.
Both curves have the same initial point, 1,0, and the same final point 1,0. Since they
are simple curves, we can therefore say they have the same orientation. Notice also that
the work done in moving a particle along each curve is the same. This is not a coincidence.
This vector field F is conservative, and a conservative vector field has a very important
property known as independence of path. This means that if two paths in the vector field
have the same initial point and the same final point, then the work integrals for the two
paths will be equal. In other words, the work done in moving a particle from one point to
another is the same regardless of the path by which the particle travels from the one point
to the other.

For the vector field Fx,y   px,y, qx,y  and the curve C with parametric equations

x  xt, y  yt, where t  a,b, 
C

F  T ds  
C

p dx  q dy  
a

b

pt xt dt  qt yt dt is

called it a work integral because its most prominent application is calculating the work done
in moving a particle through a force field from the initial point of C to the final point.

The vector field line integral 
C

F  T ds has many other applications as well. In certain

applications, F represents fluid flow, rather than a force field. In these applications, C is

generally a simple, closed curve. In this context, 
C

F  T ds is known as a circulation

integral. To indicate that the curve C is closed, we may write 
C

F  T ds. (The Stewart text

stipulates that this notation requires C to have a counter-clockwise orientation, also known
as a positive orientation. However, other texts, such as Briggs, do not require this.)

The work integral or circulation integral is formed by integrating, over the curve C, the
component of F in the direction of T, compTF, which is F  T. In other words, we integrate
the component of F that is tangential to the curve (in the direction of motion).
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The work or circulation integral is only one kind of vector field line integral. Another kind is
known as a flux integral. This arises in connection with fluid flow, and is formed by
integrating, over the curve C, the component of F that is normal to the curve (in other
words, normal or orthogonal or perpendicular to T. This will be compnF, which is F  n,
where n is an appropriately selected unit normal vector (a unit vector normal to the tangent
line).

Earlier this semester, we defined a curve’s principal unit normal vector as Nt  Tt

|Tt|
,

which is orthogonal to Tt and points in the direction in which the curve is turning (known as
the direction of curvature). However, for present purposes, we must consider a different
unit normal vector, which we will call the flux unit normal vector.

Recall that Tt was defined as 1
vt

vt  xt2  yt21/2  xt,yt  (in other words, T

is the unit vector in the direction of v. Since v   xt,yt , the vector  yt,xt  is
orthogonal to v, and therefore also orthogonal to T.  yt,xt  has the same
magnitude as v (i.e., its magnitude is v, so 1

v  yt,xt  is a unit vector orthogonal to
T, and hence normal to the tangent line–i.e., it is a unit normal vector. We shall define this
as our flux unit normal vector, which we will denote as nt. Thus,
nt  xt2  yt21/2  yt,xt . More briefly, n  1

v  y,x . For any value of t,
if nt and Tt are positioned with a common tail, typically the point xt,yt on curve C,
then nt points to the right of Tt.

Recall that a simple, closed curve in the x,y plane has a well-defined interior, and if the
curve has a counter-clockwise orientation, then its interior always lies to the left of T (which
implies that the exterior always lies to the right). Assuming this orientation, n always points
to the curve’s exterior (and n always points to the curve’s interior). Thus, we may refer to n
as the outward unit normal vector, and we may refer to n as the inward unit normal
vector. For example, if C is a circle centered at the origin, then n always points toward the
origin, while n always points away from the origin (assuming the circle is oriented
counter-clockwise).

For the sake of brevity, the flux unit normal vector, n  1
v  y,x , may be referred to

simply as the flux vector. If C is a simple, closed curve with a counter-clockwise orientation,
we may refer to n as the outward flux vector.

The vector field line integral 
C

F  n ds is known as a flux integral. If C is a closed curve

oriented counter-clockwise, then we write this as 
C

F  n ds, and we may call it the outward

flux integral.

It can be shown that 
C

F  n ds  
C

p dy  q dx  
a

b

pt yt  qt xt dt
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Work and Circulation Integrals in Three Dimensions:

Let Fx,y, z   px,y, z, qx,y, z, rx,y, z  be a three-dimensional vector field, where the
component functions p, q, and r are continuous.

Let C be a simple, piecewise-smooth curve in x,y, z space with parametric equations
x  xt, y  yt, z  zt, where t  a,b. The initial point of C is Pa  xa,ya, za and
the final point is Pb  xb,yb, zb.

We may write Ft   pt,qt, rt  in place of
Fxt,yt, zt   pxt,yt, zt, qxt,yt, zt, rxt,yt, zt .

The work or circulation integral can be expressed as:

1. 
C

F  T ds

2. 
C

F  v dt

3. 
C

F  dr

4. 
C

p dx  q dy  r dz  
C

p dx  
C

q dy  
C

r dz

We evaluate by rewriting the integral in terms of t.

 
a

b

Ft  vt dt

 
a

b

pt xt dt  qt yt dt  rt zt dt  
a

b

pt xt  qt yt  rt zt dt, or


a

b

pt xt dt  
a

b

qt yt dt  
a

b

rt zt dt

Example 4:

Let Fx,y, z   z,x,y . Let C be the tilted ellipse x  cos t, y  sin t, z  cos t, where

t  0,2. Find 
C

F  T ds.

Here, px,y, z  z, qx,y, z  x, and rx,y, z  y. Thus:
 pt  cos t, qt  cos t, and rt   sin t.
 xt   sin t, yt  cos t, and zt   sin t.
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
C

F  T ds  
0

2

cos t sin t  cos tcos t   sin t sin t dt 


0

2

cos t sin t  cos2t  sin2tdt  
0

2

1  cos t sin tdt  
0

2

1  1
2 sin2t dt 

t  1
4 cos2t

0

2
 2  1

4   0  1
4   2
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